SELF-ADJOINTNESS OF GENERALIZED MIC–KEPLER SYSTEM

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Adjointness of Generalized MIC-Kepler System

We have studied the self-adjointness of generalized MIC-Kepler Hamiltonian, obtained from the formally self-adjoint generalized MIC-Kepler Hamiltonian. We have shown that for l̃ = 0, the system admits an 1-parameter family of self-adjoint extension and for l̃ 6= 0 but l̃ < 1 2 , it has also an 1parameter family of self-adjoint extension.

متن کامل

Essential self - adjointness

1. Cautionary example 2. Criterion for essential self-adjointness 3. Examples of essentially self-adjoint operators 4. Appendix: Friedrichs' canonical self-adjoint extensions 5. The following has been well understood for 70-120 years, or longer, naturally not in contemporary terminology. The differential operator T = d 2 dx 2 on L 2 [a, b] or L 2 (R) is a prototypical natural unbounded operator...

متن کامل

Continuation semantics and self-adjointness

We give an abstract categorical presentation of continuation semantics by taking the continuation type constructor : (or cont in Standard ML of New Jersey) as primitive. This constructor on types extends to a contravariant functor on terms which is adjoint to itself on the left; restricted to the subcategory of those programs that do not manipulate the current continuation, it is adjoint to its...

متن کامل

Self-adjointness of Cauchy Singular Integral Operator

We extend Krupnik’s criterion of self-adjointness of the Cauchy singular integral operator to the case of finitely connected domains. The main aim of the paper is to present a new approach for proof of the criterion. Let G+ be a finitely connected domain bounded by the rectifiable curve C = ∂G+, G− = C \ clos G+ and ∞ ∈ G−. Suppose also that w(z), z ∈ C is a nonnegative weight such that w(z) 6≡...

متن کامل

Self-adjointness via Partial Hardy-like Inequalities

Distinguished selfadjoint extensions of operators which are not semibounded can be deduced from the positivity of the Schur Complement (as a quadratic form). In practical applications this amounts to proving a Hardy-like inequality. Particular cases are Dirac-Coulomb operators where distinguished selfadjoint extensions are obtained for the optimal range of coupling constants.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Modern Physics Letters A

سال: 2007

ISSN: 0217-7323,1793-6632

DOI: 10.1142/s0217732307022530